If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5x-14=0
a = 4; b = 5; c = -14;
Δ = b2-4ac
Δ = 52-4·4·(-14)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{249}}{2*4}=\frac{-5-\sqrt{249}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{249}}{2*4}=\frac{-5+\sqrt{249}}{8} $
| 5z-4=4z | | 6(3m+1)=5(=2m=2) | | 4/5x+7=23 | | 0=-4.9x^2+40x | | 4/5m-1/5=5/50 | | (5x+3)+(8x-4)=90 | | 13=z/8+9 | | 3/13x+4=2/13x-11 | | 4/8x+5/7=-2/7x+2/8 | | 6=1.1p+1.2 | | x2*8x=-15 | | 6x-10-4x=6x-5 | | -6m+36=-6(m+6) | | 1–|3p+1|=–3 | | 3x-62+X=86 | | 9x^2+7x-6=-8 | | 24=3(a+9) | | |6m–2|=0 | | (-3t^2+2t-7)+(5t^2+6t+1)= | | x/5+4=17 | | (9x-15)+53=(12x-1) | | 7p^2-13=-8 | | u/3=u/4+2 | | 38+5n=-2(8-7n) | | (3x+5)+(2x+1)+(3x+5)+(2x+1)=98 | | 1/8(a+3)=1/5(9-a) | | 7p^2-8=0 | | 7n+6(2n-2)=5(3n-2)+4n-2 | | 8x+3x+6=-46 | | x-(.03x+3)=385 | | 8x-4+15=3x+21 | | 12y+27=111 |